, 2010), consistent with their role as signaling a tonic modulatory tone. Moreover, tonic low concentrations of DA seem to be important for maintaining circuit basal function, while
phasic, higher concentrations produce shorter-term modulation (Rodgers et al., 2011a, 2011b). One of the most puzzling questions arising from extensive neuromodulation is how the integrity of the modulated circuits is maintained, although so may circuit parameters can be altered. If one tries to build a computational model of either a single neuron or a circuit, it can be quite hard to find a set of parameters that are consistent with the CHIR-99021 concentration desired output. Indeed, random assignment of parameters to a single neuron or a circuit will lead to significantly more failures than successful models (Prinz, 2010; Prinz et al., 2003a, 2004; Taylor et al., 2009). Nonetheless, there are many different sets of parameters that can produce similar output patterns (Goldman et al., 2001; Prinz et al., 2004; Taylor et al., 2009). There are circumstances in which neuromodulators are used to qualitatively transform the behavior of a circuit, such as during transitions from sleep to wakefulness (McCormick, 1989, 1992; McCormick and Bal, 1997) or when a hormonal pathway is used to trigger eclosion (Kim et al., 2006) or molting (Webster et al., 2012). There are also neuromodulatory influences
that reshape networks during ongoing behavior, and the sets of parameters KU-55933 molecular weight that are produced by neuromodulator action must be consistent with stable and appropriate cellular Florfenicol and circuit function (Goldman et al., 2001). Understanding how circuits can be stable in the face of ubiquitous neuromodulation is an important and deep problem. Why don’t the circuits important for behavior become “overmodulated” more often, and what mechanisms might protect against overmodulation? The answers to this question may be partially idiosyncratic
to each circuit, but I suggest some general mechanisms that may play a role in maintaining functional circuit performance during modulation. Harris-Warrick and Johnson (2010) suggest that the pattern of dopamine modulation of STG neurons at the cellular level (Figure 5) is ideally suited to maintain stable function. Specifically, by acting on both inward and outward currents, dopamine actions can keep individual neurons, and therefore the network, within their operating range (Harris-Warrick and Johnson, 2010). The importance of the voltage dependence of the NMDA receptor for the induction of LTP is well appreciated, but the ability of the NMDA receptor to induce oscillations in the spinal cord is less well known (Sigvardt et al., 1985). The neuropeptide proctolin elicits a voltage-dependent inward current similar to that evoked by NMDA (Golowasch and Marder, 1992). This current is blocked at hyperpolarized membrane potentials by extracellular Ca2+ and has a reversal potential about 0mV.