To each 50 μL of protein extract (approximately 0 25 mg protein)

To each 50 μL of protein extract (approximately 0.25 mg protein) 10 μL 60 mM DTT in 25 mM ammonium bicarbonate (ABC) was added, followed by incubation for 45 min at 56°C to reduce cystines. After 45 minutes, 100 mM iodoacetamide (IAA) in ABC was added to a final IAA concentration 25 mM and the samples kept in dark for 1 h at room temperature to alkylate and protect the cysteins. The

proteins were then digested for 5 hours at 37°C by adding 10 μL 100 ng/μL sequencing-grade trypsin (sequencing grade, Promega, Madison, WI, USA) in ABC. The digestion was quenched by adding 5 μL 10% TFA to lower the pH. The peptide digests were stored at -20°C until analysis. selleck chemical For MS/MS peptide identification, 25 μg of proteins from two time points, one before and one after the diauxic shift, were fractionated using 8-12% acrylamide SDS-PAGE (NuPAGE™ 8-12%, Invitrogen, Carlsbad, CA, USA). The gel was stained overnight (12 h) in staining solution (Invitrogen) with 5% methanol and was then washed with milli-Q water until cleared. The gel lanes were cut into twenty-six 2

mm bands and transferred to 96-well plate. Each band was de-stained using 25 mM ABC and acetonitrile, reduced (75 μL 10 mM DTT, 56°C, 30 minutes), alkylated (75 μL 55 mM iodoacetamide, room temperature, 20 min in dark) and digested in-gel using trypsin (20 μg in 20 μL) 12 h at 37°C. The supernatant from each well was transferred to a fresh plate. The digestions were quenched by adding 4 μL 5% TFA (first RXDX-106 manufacturer extraction). The gel pieces were then incubated for 1 hour

at 37°C in 0.1% TFA, after which the second supernatant was pooled with the first extraction and frozen. FTICR – Ion Trap Cluster The novel FTICR – ion trap cluster [12] consists of a refrigerated solariX™ 12 T FTICR (Bruker Daltonics, Bremen, Germany) and six ion traps. In this study, CID data from an HCT ultra ion trap (Bruker Daltonics) was used for peptide identification by MS/MS. All mass spectrometers in the cluster were coupled on-line to parallel, Epothilone B (EPO906, Patupilone) splitless NanoLC-Ultra 2D plus systems (Eksigent, Dublin, CA, USA) with additional loading pumps for fast sample loading and washing, which resulted efficient use of the mass spectrometers and high chromatographic peak capacity. All LC systems were configured with 15-cm 300 μm-i.d. ChromXP C18 columns supplied by Eksigent and linear 90 minute gradients from 4 to 44% acetonitrile in 0.05% formic acid were applied. The LC systems were controlled by HyStar 3.2-3.4 with a plugin from the LC manufacturer, the ion traps by esquireControl 6.2 and the FTICR by apexControl 3.0, all from Bruker. The acquired data from each mass spectrometer was automatically transferred to a dedicated server and processed as described below. Data analysis Each individual MS/MS dataset provided by the ion traps was converted to MGF files using DataAnalysis (Bruker Daltonics). The datasets were separately searched using Mascot 2.

Comments are closed.