0, IPTG was added to a final concentration of 1 mM. After a 2-hr induction, bacteria were harvested by centrifugation at 6,500 × g for 20 min and then resuspended in HB
buffer (20 mM Tris, 150 mM NaCl, 30 mM imidazole, pH8.0). The resuspended bacteria were lysed with a French Pressure Cell (SLM Instruments, Inc. Urbane, IL), and the cell lysate was centrifuged at 48,000 × g for 1 hour. The clarified supernatant was passed through a ProBond™ nickel-nitrilotriacetic acid resin affinity column (Invitrogen, Carlsbad, CA) to purify the His6-tagged ColE7/ImE7 according to manufacture’s 5-Fluoracil protocol (Invitrogen, Carlsbad, CA). Antibody preparation for detection of protein whose expression is affected by gadXY To prepare antibodies against envelope proteins BtuB, TolQ, TolR, TolA, TolB, Pal, and OmpF, the coding region of each protein was fused inframe with His6-tag in the plasmid pQE30 (Qiagen), respectively. The His6-tagged proteins were then expressed and purified using the same method as described for His6-tagged ColE7/ImE7
and sent to the company to prepare polyclonal antibodies. The specificities of these antibodies were confirmed by Western blotting using these antibodies as reported by Pan et. al[49]. DNA {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| binding assay The electrophoretic mobility shift assay was performed to investigate binding of GadX to the btuB promoter. To obtain purified MalE-GadX protein, E. coli strain XL-1 Blue containing pMalE-GadX was grown in 100 ml of LB containing ampicillin (50 μg/ml) and 0.2% glucose to OD600 ~1.0. IPTG was then added to a final concentration of 1 mM. After 2 hr of incubation, the cells were pelleted, resuspended BV-6 order in maltose binding buffer (20 mM
Tris-HCl pH 8.0, 200 Baricitinib mM NaCl), and lysed with a French Pressure Cell. The cell lysate was centrifuged at 48,000 × g for 1 hr, and the supernatant was subjected to an amylose resin affinity chromatography (New England BioLabs) to purify the MalE-GadX protein. To make probes for the DNA binding assay, a 461-bp (Figure 3, -219 – +242) DNA fragment containing the btuB promoter was amplified with primers F/btuB-219-XbaI and R/btuB+242-HindIII (Table 5) by PCR. The DNA fragment containing the promoter of gadA (-176 – +77, 253 bp) or gadB (-173 – +77, 250 bp) was used as the positive control, which were amplified with primer pairs F/gadA-176 and R/gadA+77 and F/gadB-173 and R/gadB+77 (Table 5), respectively, as described by Tramonti et al. [19]. The DNA fragment containing the upstream noncoding region of pal was used as the negative control, which was amplified with primers F/pal-XbaI and R/pal-HindIII (Table 5). These DNA fragments were end-labeled with [γ-32P] ATP by T4 polynucleotide kinase (New England BioLabs). The labeled DNA fragments (6 fmol) were incubated with the MalE-GadX protein at room temperature for 20 min in 10 μl of binding buffer [19]. Samples were then loaded on a 5% nondenaturing polyacrylamide gel in 0.5X TBE buffer and electrophoresed for 35 min at room temperature.