In adulthood, the MS animals (conditioned during adolescence) sti

In adulthood, the MS animals (conditioned during adolescence) still displayed impairments in the expression of AFC (only in males) and CFC. Furthermore, the MS procedure had also an impact on the expression of CFC (but not AFC) after retraining in adulthood. Our findings imply that ELS may permanently affect fear learning and memory. The results also support the hypothesis that, depending on individual predispositions and further experiences, ELS may either lead to a resilience or a vulnerability to early- and late-onsets psychopathologies. (C) 2014 Elsevier B.V. All rights reserved.”
“Nuclear factor of activated T cells (NFAT) was first described

as an activation and differentiation transcription factor in lymphocytes. Several in vitro studies suggest that NFAT family members are redundant 17DMAG datasheet proteins. However, analysis of mice deficient for NFAT proteins suggested different roles for the NFAT family of transcription factors in the regulation of cell proliferation and apoptosis. NFAT may also regulate several cell cycle and survival factors influencing tumor growth and survival. Here, we demonstrate find more that two constitutively active forms of NFAT proteins (CA-NFAT1 and CA-NFAT2 short isoform) induce distinct phenotypes in NIH 3T3 cells. Whereas CA-NFAT1 expression induces cell cycle arrest and apoptosis in NIH 3T3 fibroblasts,

click here CA-NFAT2 short isoform leads to increased proliferation capacity and induction of cell transformation. Furthermore, NFAT1-deficient mice showed an increased propensity for chemical carcinogen-induced

tumor formation, and CA-NFAT1 expression subverted the transformation of NIH 3T3 cells induced by the H-rasV12 oncogene. The differential roles for NFAT1 are at least partially due to the protein C-terminal domain. These results suggest that the NFAT1 gene acts as a tumor suppressor gene and the NFAT2 short isoform acts gene as an oncogene, supporting different roles for the two transcription factors in tumor development.”
“Dendritic spines are the principal recipients of excitatory synaptic inputs and the basic units of neural computation in the mammalian brain. Alterations in the density, size, shape, and turnover of mature spines, or defects in how spines are generated and establish synapses during brain development, could all result in neuronal dysfunction and lead to cognitive and/or behavioral impairments. That spines are abnormal in fragile X syndrome (FXS) and in the best-studied animal model of this disorder, the Fmr1 knockout mouse, is an undeniable fact. But the trouble with spines in FXS is that the exact nature of their defect is still controversial. Here, we argue that the most consistent abnormality of spines in FXS may be a subtle defect in activity-dependent spine plasticity and maturation.

Comments are closed.